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SUMMARY 
The fluid flow in distensible tubes is analysed by a finite element method based on an uncoupled solution of 
the equations of wall motion and fluid flow. Special attention is paid to the choice of proper boundary 
conditions. Computations were made for sinusoidal flow in a distensible uniform tube with the Womersley 
parameter SI = 5, and a ratio between tube radius and wavelength from O~OOO1 to 0.5. The agreement between 
the numerical results and Womersley’s analytic solution depends on the speed ratio between fluid and wave 
velocity, and is fair for speed ratios up to 0.05. The analysis of the flow field in a distensible tube with a local 
inhomogeneity revealed a marked influence of wave phenomena and wall motion on the velocity profiles. 
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INTRODUCTION 

In the analysis of the flow phenomena in distensible geometries, as found, for example, in arteries, 
not only the equations of fluid flow but also the equations governing wall motion must be taken 
into account. In many cases it is impracticable to obtain a coupled numerical solution of the 
equations of fluid flow and wall motion. The distinct ways in which the motion of the fluid and the 
wall are described, the inconvenient shape of the set of discretized equations, and the large 
amount of CPU time required to solve this coupled set of equations play a role in this respect. An 
alternative is the ‘weakly coupled‘ solution of the fluid and wall motion equations. In this 
approach the equations of fluid flow are solved for a specific time step with appropriate boundary 
conditions describing the position and movement of the wall at this time step. From the solution 
for the fluid flow the forces acting on the wall can be computed. In principle, it should be possible 
to compute the position and movement of the wall at the next time step from these forces using an 
appropriate extrapolation algorithm. Hilbert’ applied such a strategy to compute the fluid flow in 
a uniform distensible tube. Even though Hilbert made calculations for a tube in which acceler- 
ations of the wall were reduced considerably by taking a large mass of this wall per unit area, he 
experienced numerical convergence and stability problems common to this type of strategy, and 
an appropriate extrapolation algorithm could only be found empirically. 

To circumvent these problems, Reuderink et aL2 proposed a numerical approach for an 
uncoupled solution of the equations of wall motion and the equations of fluid flow. The feature of 
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this approach is the assumption that the wall motion can be calculated on the basis of the 
pressures due to wave phenomena. Motion of the wall is caused by changes in pressure and wall 
shear stress. The latter will be neglected in this study since they have only a minor influence on the 
longitudinal wall motion in the cases of interest to us. The pressure in a distensible geometry is the 
result of wave phenomena and local fluid effects. The wave phenomena are a direct consequence 
of the interaction between the fluid and the distensible wall. Pressure and flow disturbances travel 
through the system with a finite wave velocity. The pressures corresponding to this wave 
phenomena have a magnitude O(pcu), with p the density of the fluid, c the wave velocity and u the 
fluid velocity (Reference 3). Changes in pressure due to local fluid effects, like convective effects 
associated with the curvature of the vessel, have a magnitude C(&pu2).  This yields that the 
pressure is mainly dependent on wave phenomena if the ratio between fluid and wave velocity, 
which we will refer to as the speed ratio S,  is much smaller than unity. This holds in a number of 
situations, for example, for the flow in arteries, where usually S<O.1 (see Reference 4). Therefore, 
the first step in our approach is the calculation of the time-dependent pressure distribution due to 
wave phenomena. Next, the wall motion due to this time-dependent pressure distribution is 
calculated. Finally, this wall motion is prescribed as a boundary condition for the equations for 
the fluid flow. 

In this paper, first a more detailed outline of this approach will be given. Next, the results of 
calculations for a uniform distensible tube will be presented. For this case an analytical solution is 
described by Womersley,’ enabling us to evaluate several aspects of the numerical method used 
to solve the fluid equations. Finally, the numerical approach is used to calculate the veldcity field 
in a uniform elastic tube with a local inhomogeneity. 

OUTLINE O F  THE METHOD 

Our approach for the numerical analysis of the flow phenomena in distensible geometries is based 
on an uncoupled solution of fluid and wall motion equations, following three steps: 

1. The time-dependent pressure distribution is calculated using a quasi-one-dimensional 
model describing the propagation of pressure waves generated at the entrance of the 
distensible geometry. The assumption of one-dimensionality holds if the tube radius is much 
smaller than the wavelength, which is the case, for example, for wave propagation in arteries 
(see Reference 4). In this study we use a linear model assuming that the fluid velocity is much 
smaller than the wave velocity. This one-dimensional (1D) linear model is verified experi- 
mentally for uniform, reflectionless, latex tubes6v7 and can be extended to incorporate 
reflection phenomena as occurring, for example, in the carotid artery bifurcation.* As an 
input for this wave propagation model, the dynamic pressure-area relations at various 
locations in the geometry are needed, which are usually determined experimentally. 

2. From the time-dependent pressure distribution, the wall motion can be calculated. In 
general, this will require the development of a numerical model on the basis of geometrically 
non-linear deformation theory and an appropriate material model. However, for the 
situations discussed in this study, the wall motion is calculated analytically from the 
pressure distribution and the experimentally determined pressure-area relations already 
mentioned above. 

3. The fluid flow is described by the Navier-Stokes equation, which can be solved numerically. 
The numerical method used for this purpose is described in more detail in the next section. 
Apart from the appropriate time-dependent inflow and outflow conditions, the position of 
the wall is updated and the correct fluid velocity at the wall is prescribed as a boundary 
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condition using the results of the calculations of the wall motion mentioned in the previous 
step. 

GENERAL FLUID FLOW 

The flow of an incompressible isothermal Newtonian fluid is described by the Navier-Stokes 
equation and continuity equation. To solve these equations, a spatial discretization is applied 
using Galerkin's finite element method. This results in the following set of non-linear first-order 
differential equations (see, for instance, References 9-1 1): 

( 1 )  

Lu = 0, (2)  

MU + [S + N(u)] u + LTp = f + b, 

where MU represents the local acceleration term, Su the viscous term, N(u)u the convective 
acceleration term, LTp the pressure gradient term, and Lu the velocity divergence term. On the 
right-hand side, f and b represent the body and boundary forces, respectively. Finally, the 
columns u and p contain the velocity and pressure unknowns in the interpolation points, 
respectively. The element used is the modified Crouzeix-Raviart element, with 1 pressure and 
2 pressure-gradient unknowns and 14 velocity unknowns for 2D calculations. The accuracy is 
Lo(h3) for the velocity and O ( h 2 )  for the pressure, h being a characteristic dimension of the finite 
element in the mesh. To avoid partial pivoting, the set of equations (1) and (2) was uncoupled with 
a penalty-function method. To this end, the discretized continuity equation (2)  is replaced by 

LU =&M,p, (3) 

where the penalty-function parameter E is chosen to be sufficiently small in order to comply with 
the incompressibility of the fluid. When the time derivative in the discretized momentum equation 
(1) is approximated by a finite difference method, this equation can be r e ~ r i t t e n ' ~  as 

un + = f + + b" + O ,  

u"1-u" 

At (4) 

(5 )  
p"+l=;  1 M;1Lu"+l. 

Here n denotes the time-step number. For O =  1 this scheme reduces to the Euler-implicit scheme 
having an accuracy of &'(At) for linear equations, while for €I=* this scheme reduces to 
a Crank-Nicolson-type method which is @(At2) accurate for linear equations. The non-linear 
convective term N ( u " + ~ ) u " + ~  is linearized using one step of a Newton-Raphson iteration scheme 

N(U" + e ) ~ n  + @  = J(u")u" + - N(u")u", (6) 

(7) 

where J is the Jacobian matrix of N. Together with the equation 

U"+O = &"+ 1 + (1 - 0) u", 

this linearization technique results in 

This equation shows how, starting with a solution u" at time step n, the solution u"+O is calculated 
for time step n + O  using an Euler-implicit step. Next, the solution un+l  can be calculated by 
extrapolation from u"+' and u" using equation (7). 
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FLOW IN A DISTENSIBLE UNIFORM TUBE 

Governing equations 

The flow field in a uniform distensible tube with radius R and a length equal to 2 times the 
wavelength i., filled with a Newtonian fluid with density p and dynamic viscosity 9 will be 
analysed. Due to its cylindrical symmetry, the problem is two-dimensional. For a description of 
the flow in this tube it is convenient to introduce the following dimensionless quantities: 

with r and z the radial and axial co-ordinates, respectively, u and w the radial and axial velocity 
components, respectively, I w I the amplitude of the cross-sectionally averaged axial velocity, c1 the 
wave velocity, and 0 the stress tensor. If no reflections are present in the tube, the time-dependent 
pressure distribution is described using the linear quasi- 1 D model by a travelling wave: 

(10) 

where p o  is a complex number describing the amplitude and phase of the pressure at the entrance 
z = O  at time t = O  and Re[] denotes the real part of [.I. For convenience, we will take the phase of 
p o  equal to zero, so that po  is the same as the pressure amplitude at the entrance z=O. The 
complex wave velocity is represented by c, of which the real part describes the wave velocity cl, 
while the imaginary part describes the damping of the wave. For a tube under ‘maximal 
longitudinal constraint’, an assumption usually made for arteries, meaning that no longitudinal 
wall motion is possible, the complex wave velocity c is given by the linear quasi-1D model as6*’ 

p(z ,  t ) =  Re [pOejw(t-Z/c) 1, 

where C is the compliance of the tube, which is a measure for the ratio between pressure and 
cross-sectional area changes, and Flo is a function of Womersley’s parameter a = R,/ (op/v) .  
Instead of choosing a value for the compliance C for our test situation, from which the complex 
wave speed can be computed, we directly chose a value for the wave velocity cl. For elastic wall 
behaviour, there is no phase difference between pressure and cross-sectional area oscillations and 
the compliance C is real. Therefore, the imaginary part of the complex wave velocity correspond- 
ing to our choice of the wave velocity c1 can be calculated using equation (11) as 

Im[c] Im [(I  or))"^] -- - 
ci Re [(l -F10(cr))1’2]. 

Using equations (9) and (12), dropping the accents, equation (10) can be rewritten in a dimension- 
less form as 

(13) P ( ~ ,  t)=Re [poe2”j(t-&f-’(~))] 

where $(a) is defined as +(a)=c/cl. 

for a tube under maximal longitudinal constraint, 
As a next step, the wall motion is calculated based on linear deformation theory, which yields, 

i(z, t )  = 0, (14) 
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where 5 and [ represent the longitudinal and radial wall motion, respectively. Please note that 
equation (15) indicates that the relative diameter change at a given value of Womersley’s 
parameter a is directly proportional to the speed ratio S = I W liel. 

The r and z components of the Navier-Stokes equation and the continuity equation, written in 
dimensionless form using equations (9), yield 

at dr’ 

i a  aw 
- - (ur)  +- aZ =O, 
r ar 

where G = R/A is the ratio between tube radius and wavelength. From the preceding equations, it 
is clear that the flow problem can be characterized by three dimensionless numbers: a, S and G. 
An analytic coupled solution of the wall motion and fluid flow is given by Womersley’ for 
situations where S 4 1 and G Q 1. 

Spatial discretization 

The element mesh used for the calculations is shown in Figure 1. The geometry of the tube 
changes as described by equations (14) and (15) due to the motion of the wall. The figure shows 
the shape at t=O.  The length of the tube is chosen equal to two wavelengths. The mesh can be 
mapped on a rectangular grid and contains eight elements in the radial direction and 64 in the 
axial direction. Because the geometry of the tube changes, the mesh is updated for each time step; 
this is done without changing its topology. Since the displacements per time step are small, the 
solution U” calculated for the nodal points of the old mesh could serve as a starting solution on 
the nodal points of the new mesh [see equation (811. 

Boundary conditions 

Apart from the geometry, the boundary conditions are also time dependent. As inflow 
condition (z  =O), the fully developed velocity profile, as calculated by Womersley,’ is prescribed in 
a dimensionless form given by 

Figure 1. The element mesh used for the uniform distensible tube 
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The boundary conditions at the tube axis are based on symmetry considerations: 

while the boundary conditions of the wall are obtained by taking the time derivatives of the wall 
displacements: 

There are several possibilities for the outflow conditions: 

The radial and axial velocity profiles, u and w, as described by equations (19) and (20), 
respectively, are prescribed. 
The normal and tangential components of the stress vector, a, and a,, which, in axisymmet- 
ric cylinder co-ordinates, are given, respectively, by 

4xG2 Ciw 
(7 = - - - - - - - - p ,  

Q2 2z 

4nG2 dw i?u 
a, = 7 (- + .-) 

Q ar ’ 

can be prescribed by substitution of equations (19) and (20) in equations (23) and (24). 
In general, knowledge about the velocity profiles as given by equations (19) and (20) is not 
available, and boundary conditions of type 1 or 2 cannot be applied. In that case one might 
use approximations for the stress components assuming that the contributions of the 
velocity gradients are negligible: 

Time integration and penalty-function parameter 

For all calculations, the time integration was carried out over three successive flow cycles. Sixty 
four time steps were taken per flow cycle, when 128 time steps were taken, the solution was only 
0(10-5) different. For the first cycle, an Euler-implicit time integration scheme (O= 1) was chosen 
to damp out errors induced by the initial ~0ndition.I~ For the two subsequent cycles, 
a Crank-Nicolson scheme (0 = $) was taken to obtain a higher-order accuracy. After completion 
of the third flow cycle, the time integration was finished, because the solution obtained by 
carrying out an additional flow cycle showed a difference of 0(10-‘). 

for all calculations, except the 
ones with G = 0 5  and G=0.1. Here the penalty-function parameter had to be chosen equal to 
E =  and E =  5 x respectively, in order to obtain an accurate solution for the pressure 
distribution in the tube. In these cases the solutions obtained for the velocity were not signific- 
antly different from the solutions calculated with the penalty-function parameter equal to 
E =  10-6. 

The penalty-function parameter was taken equal to e =  

Results and discussion 

Table I gives an overview of the computations of the flow field in the distensible, uniform tube 
described by the equations given above. First, a calculation was carried out for very small 
fluid/wave velocity and radius/wavelength ratios, S =0.0005 and G =0*001. For these small values 
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Table I. An overview of the numerical calculations made for the uniform tube 

u S G Boundary E Equation 
condition 

0oO05 0oO01 
0.05 O ~ o O 0  1 
0.2 o.oO0 1 
0.2 o.oO0 1 
o.ooo5 0.1 
O.OOO5 0.5 
0 2  o.oO0 1 
0 2  O~oO0 1 
0.2 O ~ o O 0  1 

10-6 Navier-Stokes 
10-6 Navier-S to kes 
10-6 Navier-Stokes 
10-6 Navier-Stokes 

Navier-Stokes 
5 x Navier-Stokes 
10-6 Navier-Stokes 
10-6 Navier-Stokes 
10-6 Stokes 

* Corrected inflow conditions; see text. 

S = 0.0005 
(a) 

s = 0.2000 
(0) 

Figure 2. Axial velocity profiles at equidistant time steps for (a) S=00005 and (b)S=O.2, both with G=0.0001. The 
dashed line represents the centre line of the tube. The inflow of the tube is at the left side 

of S and G, Womersley’s analytic solution should be valid. For this and all other cases discussed 
below, Womersley’s parameter was chosen to be CI = 5. Figure 2(a) shows the numerically 
predicted axial velocity profiles at various equidistant time steps. For this small speed ratio, the 
relative diameter change is only 0.01per cent [see equation (23)]. The propagation and damping 
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of the wave to the right part of the tube is clearly visible. Next, the influence of the magnitude of 
the speed ratio was analysed by increasing its value to S=OO5 and S=O.2, respectively. The 
results for S=O.2 are shown in Figure 2(b). With the increase of the speed ratio, the relative 
diameter change increases to 10 per cent. Again the propagation of the wave to the right part of 
the tube is clearly visible. A remarkable difference with the results for S = O.OOO.5, as presented in 
Figure 2(a), is the presence of a net outflow at the distal end of the tube over a flow cycle. This is 
due to a non-linear effect of the fluid flow. As inflow condition, a velocity profile [equations (19) 
and (20)] corresponding to Womersley’s analytical solution is prescribed in which the variation in 
cross-sectional area is neglected. This is not valid at large values of the speed ratio. The tube has 
a maximum entrance diameter during the phase of positive entrance flow, and a minimum 
entrance diameter during the phase of negative entrance flow. This results in a net inflow at the 
entrance over a flow cycle and a net outflow at the distal end. 

-1.5 ‘ I 
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-1.5 
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0.00 0.50 1 .oo 1 S O  2.00 
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Figure 3. (a) Comparison of the axial velocity won the tube axis (top panel), the pressure p on the tube axis (centre panel), 
and the wall shear stress 5, (bottom panel) for values of S = 5 x  (----), S=0.05 (---) and S=0.2 (-----) with the 
analytical results calculated using Womersley’s theory (-). The results presented correspond to the solution at t = 0. 

(b) Same but only for S =0.2 (- - - - -) with a corrected Row inflow condition 
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In order to study the influence of the speed ratio in more detail, the computed axial velocity 
component and the pressure, both taken at the tube axis as a function of axial position, and the 
wall shear stress, as a function of axial position, are compared with the analytical solution 
obtained using Womersley's theory (Figure 3). The same is done for the profiles of the axial and 
radial velocity components taken along the tube radius at axial position z = 1.0 (Figure 4). Except 
for the radial velocity component, a discrepancy is seen to increase with the value of the speed 
ratio, partly caused by the fact that there is a net inflow at the entrance. A sinusoidal flow at the 
entrance can be guaranteed by modifying the inflow conditions by multiplying the equation for 
the axial velocity component [equation (19)] by the time-dependent ratio of reference cross- 
sectional area and actual cross-sectional area. Figure 3(b) shows the results for this type of inflow 
condition at S=O-2. It is seen clearly that the magnitude of the discrepancies decreases towards 
the distal end of the tube, where the pressure oscillations and the resulting diameter changes are 
much smaller due to damping. 

The influence of the magnitude of the ratio between radius and wavelength was analysed in the 
same way as was done for the speed ratio. Calculations were carried out for G=0.1 and G=0.5, 
both with S = 0-0005 and a = 5. Significant discrepancies between the analytical and the numerical 
solutions were found only for G=0.5. Relatively large values for G can be chosen without these 

1 .o L . 1  

? O  t 
0.5 - 

3 0.0 

- ' i s  ' 1 -1 
000 025 050 075 700 175 0 00 0 25 050 075 1M3 7 25 

r 

Figure 4. Comparison of the numerically calculated axial and radial velocity profiles, w and u respectively, at z= 1, with 
the analytical results using Womersley's theory. For legend see Figure 3. The results presented correspond to the solutions 

at t=OTand t=T/4 
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discrepancies appearing. This can be explained from the fact that only the square of G plays a role 
in the equations of fluid flow. 

All calculations mentioned above were carried out using outflow conditions of type 2 [equa- 
tions (23) and (24)]. The influence of the type of outflow conditions chosen was studied for the 
physiologically relevant range by making calculations for c1= 5, S = 0.2 and G = O.OOO1. No 
significant differences, 0(10-4), were found between solutions obtained using the comprehensive 
equations (23) and (24) or the simplified equations (25) and (26) for the prescription of the normal 
and tangential components of the stress vector at the outflow. Prescription of the radial and axial 
velocity components at the outflow [type 1: equations (19) and (20)] results in significant 
differences, partly due to the fact that Womersley’s solution is incorrect at  large speed ratios. The 
speed ratio not only quantifies the relative diameter changes [equation (15)] but is also propor- 
tional to the contribution of the convective term in the equations for the fluid [equations (16) and 
(17)]. The assumption of the speed ratio being small allowed Womersley to simplify the equations 
for the fluid flow by omitting the convective terms. In order to study the contribution of the 
convective terms to our numerical solution, the solution of the Stokes equation was computed. 
A speed ratio S = O . 2  was taken. Again u = 5  and G=O001 were taken. Comparison with the 
corresponding solution of the Navier-Stokes equation revealed differences in the velocities of up 
to 5 per cent of the maximum velocity. 

FLOW IN A DISTENSIBLE TUBE WITH A LOCAL INHOMOGENITY 

Governing equations* 

To illustrate the method, fluid flow in a distensible tube containing a section with a different 
compliance and diameter (Figure 5) was analysed. An overview of the properties of the tube is 
given in Table 11. The time-dependent pressure distribution was calculated using a model for the 
wave propagation in the tube. This is more complicated than for the uniform tube. The 
inhomogeneity of the tube might have a marked influence on the wave propagation: a forward- 
travelling wave (pf ) will be partly transmitted (p,) ,  and partly reflected (pb). Recently, we developed 
and tested a model to calculate the propagation of waves in tubes with a local inhomogeneity 
with a length much smaller than the relevant wavelengths’. Using this model, expressions are 
found for the reflection and transmission coefficients, relating the forward- and backward- 
travelling waves at  the proximal end of the inhomogeneity and the forward-travelling and 
transmitted waves at  the distal end of the inhomogeneity, respectively. The time-dependent 
pressure distribution outside the inhomogeneity can be obtained by applying wave propagation 
theory to the forward, reflected and transmitted waves: 

section Al:  

P ( Z ,  t )  = P r k  t )  + Pb(Z, t )  
1, (27) - R~ [poe2njw(r-z/c)+ Znjw(r-(222-z)/d Po l-e - 

section A,: 

* For convenience, the equations in this section are not presented in their non-dimensional form, but are expressed in 
terms of physical quantities. 
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calculation of 

Figure 5. Schematical representation of the solution strategy used for the uniform tube with a local inhomogeneity. 

Table 11. Properties. of the distensible tube with a local in- 
homogeneity 

z1 =0.05 %be = ~ ~ ~ ~ ~ = 5  x 10-3 

z3=0.15 Gtube = 0.001 R~~,.,,,,,,=~X 10-3 

zg ~ 0 . 3  
zg =035 

z2=o.1 Stube = 0.05 

~,=0.25 
r = - 0.054 + 0.094j 
T = 0.74 - 0.48j 

z, = 1.0 

with p o  =pf(O, 0), r the reflection coefficient and T the transmission coefficient. The time- 
dependent pressure distribution in the inhomogeneity is obtained using linear interpolation 
between the pressures calculated at the proximal and distal end: 

section B: 

(29) 
z-z2 
z5 -z2 

P ( Z ,  O = P ( Z z ,  l)+- C P ( Z S ,  ~)-P(zz,  t l l .  

It is assumed that no reflected waves h e  from the termination. To calculate the wall motion, 
a numerical model on the basis of geometrically non-linear deformation theory and an appropri- 
ate material model has to be developed. For now, the wall motion is calculated in a simplified way 
from the local pressure and compliance. Again it is assumed that there is only wall motion in the 
radial direction: 

sections Al  , B and A2: 
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Because this approach would introduce sharp discontinuities in the wall position at the junction 
between sections Ai and B, transition sections T are introduced for which the wall position is 
calculated as: 

section T,: 

(31) 
z - 2 1  

R(z,  t ) = R ( z i ,  t)+- "Z3, tI-R(z1, QI, 
z 3 - z 1  

section T2: 

The boundary of the element mesh to be generated is described by equations (30H32). The length 
of the tube is chosen to be equal to 0.2 wavelength. As inflow condition (z = 0), a fully developed 
velocity profile was prescribed. The velocity profile is again related to the pressure according to 

Dis t ensi bie 

Figure 6. Axial velocity profiles at equidistant timesteps for (a) the rigid and (b) the distensible tube respectively 
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Womersley’s theory: 

In order to guarantee a sinusoidal flow at the entrance, the term R$/R2  was added in equation 
(33), as described in the preceding section. The boundary conditions at the tube axis and the wall 
are identical to the ones used for the uniform tube [equations (21) and (22)]. Outflow conditions 
of type 3 were chosen [equations (25) and (26)] in the calculations for the distensible geometry. 

For comparison, the flow field in a corresponding rigid geometry was calculated using the same 
inflow conditions [equations (33) and (34)]. A stress free outflow condition, 6, = 0, ot = 0, was 
applied. The time integration scheme was identical to the one used for the uniform tube. The 
penalty parameter was chosen equal to E =  lop6. 

Results and discussion 

Figures 6(a) and 6(b) show the computed axial-velocity profiles for the rigid and distensible 
tubes, respectively. A striking difference is, of course, that the outflow profile of the rigid tube is 
equal to the inflow profile, while the outflow profile of the distensible tube has a different phase. 
This is a logical consequence of the finite velocity with which disturbances travel through the 
distensible tube. The diameter of the inhomogeneity in the distensible tube is maximal during 
positive inflow, and minimal during negative inflow. This results in less acceleration of the fluid 
compared to the rigid tube during positive inflow, and more acceleration during negative inflow. 

t=4/8 H 
z 

t= 1 /a H 
1=5/8 H 

t=2/8 H t=3/8 H 
t=7/8 r---l 

z z z 

Figure 7. Comparison of the velocity gradients at the wall as a function of axial position calculated for the rigid ( . . . 1 . ) 
and distensible (--) tube at equidistant timesteps 
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P 

t=7/8 I 

z z Z z 
Figure 8. Comparison of the pressure calculated from the numerical solution for the flow field in the distensible tube (-- ) 
with the pressure calculated from wave propagation ( ' . . . 1, both as a function of the axial position and at equidistant 

timesteps 

This has its influence on the wall shear stress too. In Figure 7 the velocity gradients, calculated for 
the rigid and distensible tube as a function of position, are compared. In the distensible tube the 
velocity gradients are somewhat less negative during the inflow phase and significantly higher 
during the negative inflow phase. 

Finally, the pressure distribution calculated from the numerical solution of the velocity field is 
compared with the pressure distribution calculated on the basis of wave propagation [equations 
(27H29)]. If significant discrepancies should show up, the solution obtained using the uncoupled 
strategy is not consistent. In that case the pressure distribution calculated from the numerical 
solution of the velocity field gives rise to a wall motion different from the one applied on basis of 
the calculation of wave propagation. For our test example Figure 8 shows a fair agreement 
between the pressure distribution given by equations (27)-(29) and the computed pressure on the 
tube axis. Only at t = 3 18 and t = 418 discrepancies are found around the inhomogeneity, indicat- 
ing that the pressure should be somewhat lower, which should enforce the effects of the 
distensibility. Realizing that major simplifications were made in the calculation of the wall 
motion, it is probably too early to draw conclusions about the accuracy of our numerical 
solution. Nevertheless, no indications were found contradicting the applicability of the strategy 
described. 

CONCLUSIONS 

A numerical strategy based on the uncoupled solution of wall motion and fluid flow was 
introduced for the analysis of the flow in distensible geometries. It was estimated that this strategy 
is applicable if the ratio between fluid and wave velocity, S=u/c ,  is small. The strategy was 
studied by making calculations of the flow field in a uniform distensible tube and comparing these 
calculations with an analytical solution valid for S 4  I and G <  1. For such small values of the 
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speed ratio and the ratio between radius and wavelength (in our calculations: S=OOOO5, 
G = OOOOt),  a perfect agreement between numerical and analytic solution was found. The 
agreement remained fair for values of S up to 0.05, and G up to 0.1. The discrepancies found at 
higher values of S might have two possible sources. The effect of neglecting the changing 
cross-sectional area in the derivation of the analytic solution is dominant, the omission of the 
convective terms is of less importance. The numerical solution found is relatively insensitive to the 
value of G. Only at values far outside the physiologically relevant range, G > 0.1, discrepancies 
with the analytic solution are found. As already mentioned, this is probably due to the fact that 
only G 2  plays a role in the equations of fluid flow. On the same grounds, it is possible to use 
simplified expressions for the outflow conditions, CT,, = 0, CT, = 0. 

It is impossible to define the range of applicability of our numerical strategy on the basis of 
comparison with an analytical solution which itself has only limited applicability. An important 
criterion in estimating the validity of the numerical solution obtained was the comparison of the 
numerically obtained pressure with the pressure calculated on the basis of wave propagation and 
was used as input for the calculation of the wall motion. If large discrepancies are found, the 
numerically obtained solution is not consistent: in that case, the numerically obtained pressure 
suggests that a different wall motion should have been prescribed. For the uniform tube, with the 
inflow corrected to be sinusoidal, significant discrepancies begin to show up from values of 
S>O.l. The findings in this study indicate that the uncoupled strategy seems to be useful, at least 
to obtain an insight into the effect of the wall distensibility on the flow phenomena. Convective 
effects might, however, play a more important role in more complicated distensible geometries 
than in the uniform tubes studied in this report. In that case, one might consider the use of this 
strategy in an iterative way: with the pressure distribution calculated from the numerical solution 
for the flow field, a new wall motion is calculated, which results in new boundary conditions for 
the solution of the equations of the fluid flow. At this moment, it is not possible to say if such an 
iterative strategy is stable. Problems similar to the ones occurring when using a ‘weakly coupled 
strategy’ occur when an appropriate extrapolation algorithm has to be chosen. 

With the analysis of the flow in a uniform tube with a local inhomogeneity, we tried to illustrate 
the possibilities of our strategy. It was shown that the distensibility of the geometry might have 
significant influence on the flow phenomena, not only because of the wave phenomena occurring 
but also because of the wall motion changing the geometry. The need for a numerical model for 
the calculation of wall motion due to the time-dependent pressure distribution became quite 
prominent, and will be the next thing to pay attention to in the further development of our 
strategy. 
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